
Defending against Java
Deserialization Vulnerabilities

Bay Area OWASP Meetup - September 2016

Luca Carettoni - @lucacarettoni

Agenda

This talk is about defense and how to protect your application
against this new old class of vulnerabilities.

● Intro to Java Deserialization bugs
● A real-life bug (SJWC serialized object injection via JSF view state)
● Discovery
● Defense

Intro to Java Deserialization bugs

From object graph data to byte stream

Serialization in Code

//Instantiate the Serializable class
String myPreso = “OWASP Bay Area”;

// Write to disk
FileOutputStream fileOut = new FileOutputStream("serial.data");

// Write object
ObjectOutputStream objOut = new ObjectOutputStream (fileOut);
objOut.writeObject(myPreso);

Deserialization in Code

// Read from disk
FileInputStream fileIn = new FileInputStream("serial.data");

// Read object
ObjectInputStream objIn = new ObjectInputStream (fileIn);
String myPreso = (String) objIn.readObject();

Deserialization in Bytecode

[...]

aload ois

invokevirtual Object ObjectInputStream.readObject()

checkcast String

[...]

Any Serializable class will
work until this point.

No type safety

Callback methods

● Developers can override the following methods to customize the
deserialization process

○ readObject()
○ readResolve()
○ readObjectNoData()
○ validateObject()
○ finalize() Invoked by the Garbage Collector

What if….

1. A remote service accepts Java serialized objects
2. In the classpath of the remote application, there are unrelated classes that are

Serializable AND implement one of the callbacks
3. The callback’s method implements something interesting*

* File I/O operations, system commands, socket operations, etc.

Unlikely?

//org.apache.commons.fileupload.disk.DiskFileItem
Private void readObject(ObjectInputStream in) {
703 in.defaultReadObject();
704
705 OutputStream output = getOutputStream();
..
709 FileInputStream input = new FileInputStream(dfosFile);
710 IOUtils.copy(input, output);
711 dfosFile.delete();
..

The Forgotten Bug Class @matthias_kaiser™

2005 - Marc Schonefeld 2015 - Steve Breen

And many more...

A real-life bug, back from 2010
Sun Java Web Console serialized object
injection via JSF view state

Sun Java Web Console

README - SJWC_3.0

“The Sun Java (TM) Web Console is
a web application that provides a
single point on entry for many of
Sun's systems management
applications. The console
application provides a single-sign
on capability and a secure home
page for many of Solaris”

JSF ViewState

● JSF ViewState uses Java
deserialization to restore the
UI state

HTML Page

<form>
<input type="hidden"
name="javax.faces.ViewState"
value=
</form>

Sun Java Web Console - Login Page ViewState

● ViewState saved client-side only
○ javax.faces.STATE_SAVING_METHOD=”client” before SJWC < 3.1

● No encryption

 A good bug

● Attractive target, as SJWC was the admin web interface for Solaris
● At the time of discovery (Jan 2010), I created a Proof-of-Concept using a

known gadget based on Hashtable collisions (Crosby & Wallach, 2003)
○ https://www.ikkisoft.com/stuff/SJWC_DoS.java

● Back then, I had no idea about the infamous Apache Common Collections
gadget (Gabriel Lawrence, Chris Frohoff)

○ /opt/sun/webconsole/private/container/shared/lib/commons-collections.jar

● However, I was able to leverage an Expression Language (EL) Injection-like to
perform arbitrary file read

● Soon after, SJWC started using server-side ViewState
○ “Beware of Serialized GUI Objects Bearing Data” July 2010, Black Hat Vegas

https://www.ikkisoft.com/stuff/SJWC_DoS.java
https://www.ikkisoft.com/stuff/SJWC_DoS.java

In practice

Discovery

Code Review - Entry Points

Look for occurrences of:

● java.io.ObjectInputStream.readObject()
● java.io.ObjectInputStream.readUnshared()

And perform manual review to determine whether they use user-supplied data

$ egrep -r "readObject\(|readUnshared\("

Code Review - Gadgets

● This is the interesting (and complex) part of exploiting Java deserialization
vulnerabilities

● As a defender, assume that there are multiple game-over gadgets available in
the classpath

○ For example, SJWC uses 58 dependency JARs

● If you want to learn more on how to discover gold and silver gadgets:
○ Marshalling Pickles - Gabriel Lawrence, Chris Frohoff
○ Java Deserialization Vulnerabilities, The Forgotten Bug Class - Matthias Kaiser
○ Surviving the Java serialization apocalypse - Alvaro Muñoz, Christian Schneider

○ Ysoserialpayloads -

https://github.com/frohoff/ysoserial/tree/master/src/main/java/ysoserial/payloads

Discovery with no code...

● Decompile :)
● Magic bytes in the network traffic

○ 0xAC 0xED
○ rO0
○ FvzFgDff9
○ …

● Passive and active tools
○ https://github.com/DirectDefense/SuperSerial
○ https://github.com/johndekroon/serializekiller
○ <--ADD your favourite web scanner vendor HERE-->

https://github.com/DirectDefense/SuperSerial
https://github.com/DirectDefense/SuperSerial
https://github.com/johndekroon/serializekiller
https://github.com/johndekroon/serializekiller

Defense

Things that do NOT work

● Patching Apache Commons
● Removing dependencies from the classpath
● Black-listing only
● Using a short-lived Java Security Manager during deserialization

Your best option. All other mitigations are suboptimal.

Do not use serialization when receiving
untrusted data.

It’s 2016, there are better options.

Option #1 - Add authentication

● Add a layer of authentication to ensure that Java serialization can be invoked
by trusted parties only

○ At the network layer, using client-side TLS certs
○ At the application layer, encryption/signing of the payload

Pro Cons

● Network layer solutions can be
implemented with no application
changes (e.g. stunnel)

● Additional operational complexity
● If enc/dec is implemented by the

application, secure keys
management is crucial

● Trusted parties can still abuse the
application

Option #2 - Use Java Agent-based solutions

● Install a Java Agent solution to perform JVM-wide validation
(blacklisting/whitelisting)

○ https://github.com/Contrast-Security-OSS/contrast-rO0
○ https://github.com/kantega/notsoserial

Pro Cons

● No application changes
● Easy to deploy and use

● Performance hit
● In certain environment, not

usable (e.g. software engineer
with no access to the underlying
JVM container)

https://github.com/Contrast-Security-OSS/contrast-rO0
https://github.com/Contrast-Security-OSS/contrast-rO0
https://github.com/kantega/notsoserial
https://github.com/kantega/notsoserial

Option #3 - Use safe ObjectInputStream implementation

● Replace calls to ObjectInputStream with calls to a safe implementation
○ Based on look-ahead techniques
○ https://github.com/ikkisoft/SerialKiller
○ https://github.com/Contrast-Security-OSS/contrast-rO0 (SafeObjectInputStream)

Pro Cons

● Full control for developers ● Requires re-factoring
● To be bulletproof*, whitelisting must be

used (which requires profiling, good
understanding of the app)

* Still affected by DoS gadgets

https://github.com/ikkisoft/SerialKiller
https://github.com/ikkisoft/SerialKiller
https://github.com/Contrast-Security-OSS/contrast-rO0
https://github.com/Contrast-Security-OSS/contrast-rO0

Mitigations in real-life

Full credit to Alvaro Muñoz and Christian Schneider

SerialKiller

SerialKiller is an easy-to-use look-ahead Java deserialization library to secure
application from untrusted input.

https://github.com/ikkisoft/SerialKiller

How to protect your application with SerialKiller

1. Download the latest version of the SerialKiller's Jar
a. This library is also available on Maven Central

2. Import SerialKiller's Jar in your project
3. Replace your deserialization ObjectInputStream with SerialKiller
4. Tune the configuration file, based on your application requirements

In practice 1/2

// Read from disk
FileInputStream fileIn = new FileInputStream("serial.data");

// Read object
ObjectInputStream objIn = new ObjectInputStream (fileIn);
String myPreso = (String) objIn.readObject();

In practice 2/2

// Read from disk
FileInputStream fileIn = new FileInputStream("serial.data");

// Read object
ObjectInputStream objIn = new SerialKiller(fileIn, "/etc/sk.conf");
String myPreso = (String) objIn.readObject();

SK’s configuration 1/2

SerialKiller config supports the following settings:

● Refresh: The refresh delay in milliseconds, used to hot-reload the
configuration file

● BlackList: A Java regex to define malicious classes
○ Provides a default configuration against known gadgets

● WhiteList: A Java regex to define classes used by your application
● Profiling: To trace classes being deserialized
● Logging: Java’s core logging facility

SK’s configuration 2/2
<?xml version="1.0" encoding="UTF-8"?>
<config>
 <refresh>6000</refresh>
 <mode>
 <profiling>true</profiling>
 </mode>
 <logging>
 <enabled>true</enabled>
 <logfile>/tmp/serialkiller.log</logfile>
 </logging>
 <blacklist>

 [...]
 <!-- ysoserial's Spring1 payload -->
 <regexp>org\.springframework\.beans\.factory\.ObjectFactory$</regexp>
 </blacklist>
 <whitelist>
 <regexp>.*</regexp>
 </whitelist>
</config>

SerialKiller v0.4 Demo

Thanks!

Luca Carettoni - @lucacarettoni

