
07/2011 18

ATTACK

I
n the last twenty years, web applications have grown
from simple, static pages to complex, full-fledged
dynamic applications. Web applications can accept

and process hundreds of different HTTP parameters to
be able to provide users with rich, interactive services. As
a result, dynamic web applications may contain a wide
range of input validation vulnerabilities such as Cross-
Site Scripting (XSS) and SQL injection (SQLi). Accordingg
to the OWASP Testing Guide v3, The most common web
application security weakness is the failure to properly
validate input coming from the client or environment
before using it. This weakness leads to almost all of the
major vulnerabilities in web applications [...]. Several kind
of injection flaws exist and they are usually strictly related
to the specific metalanguage used by the subsystems:
XML Injection, SQL Injection, LDAP Injection, etc. Each
application layer uses a specific set of technologies and a
characteristic contextual language.

In 2009, Luca Carettoni and Stefano di Paola
introduced a new class of web vulnerabilities called
HTTP Parameter Pollution (HPP) that permits to inject
new parameters inside an existing HTTP parameter.
Lately, in 2010, Marco Balduzzi of the International
Secure Systems Lab at EURECOM investigated the
problem and developed a system, called PAPAS, to
detect HPP flaws in an automated way. He used PAPAS
to conduct a large-scale study on popular websites and
discovered that many real web applications are affected
by HPP flaws at different levels.

This article discusses why and how applications
may be vulnerable to HTTP Parameter Pollution. By
analyzing different attacking scenarios, we introduce
the HPP problem. We then describe PAPAS, the
system for the detection of HPP flaws, and we conclude
by giving the different countermeasures that conscious
web designers may adopt to deal with this novel class
of injection vulnerabilities.

Parameter Precedence
In the context of websites, when the user’s browser
wants to transfer information to the web application
(e.g. a server-side script), the transmission can be
performed in three different ways. The HTTP protocol
allows to provide input inside the URI query string
(GET parameters), in the HTTP headers (e.g. within
the Cookie field), or inside the request body (POST
parameters). The adopted technique depends on the
application and on the type and amount of data that has
to be transferred.

This standard mechanism for passing parameters is
straightforward, however, the way in which the query
string is processed to extract the single values depends
on the application, the technology, and the development
language that is used.

The problem arises when a developer expects to receive
a single parameter and, therefore, invokes methods (such
as Request.getParameter in JSP) that only return a single
value. In this case, if more than one parameter with the

HTTP Parameter

Pollution Vulnerabilities

Is your web application protected against HTTP Parameter

Pollution? A new class of injection vulnerabilities allows attackers

to compromise the logic of the application to perform client and

server-side attacks. HPP can be detected and avoided. But how?

What you will learn…
• what is HTTP Parameter Pollution (HPP)

• how to spoil HPP �aws in web applications

• how to prevent HPP in web developing

What you should know…
• basic understanding of web technologies and languages

• web security knowledge is a plus

in Web Applications

HTTP Parameter Pollution

www.hakin9.org/en 19

Link B: Vo
te for Mrs. Green

Now suppose that an attacker Mallory wants to subvert
the results of the election by forcing their victims into
unintentionally voting for Mrs. Green. Mallory creates
and distributes the following trigger URL to their
victims:

Trigger URL: http://host/election.jsp?poll _ id=4568%26ca

ndidate%3Dgreen

Note how Mallory polluted the poll _ id parameter by
injecting into it a new candidate=green parameter. By
clicking on the trigger URL, the victims are redirected
to the vulnerable election website that now offers a
page containing two injected links (Link A1 and B1
contain the new candidate):

Link A1: <a href=vote.jsp?poll _ id=4568&candidate=green&c

andidate=white>Vote for Mr. White

Link B1: <a href=vote.jsp?poll_id=4568&candidate=green&can
didate=green>Vote for Mrs. Green

No matter which link users click on, the application
(in this case the JSP script) will receive two candidate
parameters. Furthermore, since the first parameter will
always be set to green, the candidate Mrs. Green will
always be voted.

It’s important to note that in order to perform a
successful attack the parameter precedence must
be consistent with the position where the injected
parameter is placed. In the example, if the developer
used a standard JSP’s Request.getParameter(„par”)

function, only the first value (the injected one) is
returned to the application, and the second value (the
one carrying the user’s actual vote) is discarded.

HPP Server-Side
While in a client-side attack the goal of the bad guy
is to attack other users, in the server-side variant the

same name is present in the query string, the one that is
returned can either be the first, the last, or a combination
of all occurrences. Since there is no standard behavior in
this situation, the exact result depends on the combination
of the programming language that is used, and the web
server that is being deployed. Table 1 shows several
examples of the parameter precedence adopted by
different web technologies.

Note that the fact that only one value is returned is
not a vulnerability per se. However, if the developer is
not aware of the problem, the presence of duplicated
parameters may produce an anomalous behavior in
the application that can be potentially exploited by an
attacker. As often in security, unexpected behaviors are
a usual source of weaknesses that could lead to HTTP
Parameter Pollution attacks in this case.

HTTP Parameter Pollution
In a nutshell, HTTP Parameter Pollution allows to
override or introduce new HTTP parameters by injecting
query string delimiters. This attack occurs when a
malicious parameter, preceded by an (encoded) query
string delimiter, is appended into an existing parameter
P_host. If P_host is not properly sanitized by the application
and its value is later (decoded and) used, the attacker is
able to inject one or more new parameters.

The RFC 3986 defines the ampersand (&) symbol
being the standard query string delimiter, but some
applications may user different symbols (|,;). In the
basic form of parameter pollution the attacker encodes
his delimiter using the percent-encoding method (%FF);
then depending from the application, other encoding
schema like the double-encoding one (%25FF) can be
adopted, or may reveal being unnecessary (ref. the
Google Blogger example).

As a consequence of an HPP flaw, the attacker may
be able to override a parameter that is submitted by a
user to the application or that is fetched from a database
server by the backend logic. These two scenarios result
in two flavours of HTTP Parameter Pollution: client-side
and server-side.

HPP Client-Side
In a typical client-side scenario (ref. Figure 1), a
malicious user is interested into distributing a malicious
URL that triggers the HPP vulnerability and runs an
unintended attack to his victims.

For example, consider a website for the election of
two candidates. The application uses a parameter poll_
id to look-up the candidates, to build the appropriate
links for voting and to generate the election page.

URL: http://host/election.jsp?poll _ id=4568

Link A: Vo
te for Mr. White

Table 1. Parameter precedence in the presence of multiple

parameters with the same name

Language/

Server

Tested Method Parameter

Precedence

ASP/IIS Request.QueryString
("par")

All (comma-

delimited string)

PHP/Apache $ _ GET["par"] Last

JSP/Tomcat Request.getParamete
r("par")

First

Perl(CGI)/

Apache

Param("par") First

Python/

Apache

getvalue("par") All (list)

07/2011 20

ATTACK

attacker leverages a vulnerable web application to
access protected data or perform actions that either not
permitted or not supposed to be executed.

The following example describes how an attacker can
exploit a HPP flaw to alter a database query in a useful
way.

Let’s consider the application printEmploys that
accepts a single parameter called department to specify
for which department the client has requested the list
of users. The value of this parameter is decoded and
used by the backend to execute a query (select) on the
database. A second parameter called what is hardcoded
in the backend code and specifies which resource
should be retrieved (the list of users).

URL: printEmploys?department=engineering
Back-end: dbconnect.asp?what=users&department=engineering
Database: select users from table where

department=engineering

If the department parameter is not sanitized, an attacker
may be able to introduce a second what parameter
by encoding his value using the standard percent-
encoding method. As the following snippet details, the
backend is developed using the ASP technology and
the values of the two parameters with the same name
(what) are concatenated via comma. This will result
in a query that selects for the list of users and their
associated passwords.

Malicious URL: printEmploys?department=engineering%26w
hat%3Dpasswd

Back-end: dbconnect.asp?what=users&department=engineerin
g&what=passwd

Database: select users,passwd from table where

department=engineering

Obviously, the real impact of this attack scenario
depends on how the application treats query results.

Figure 1. A standard client-side HPP attack

���������������

�������������������

���������

���������������������������

�������������������������������������

�����������������������������

�������������������������������

������������������

����������������

�����������

������������������

���������������

�������������������

������������������������

���

�����������������

Figure 2. The server-side attack

������������������

���������������

������� ������

��� ���

HTTP Parameter Pollution

www.hakin9.org/en 21

In order to show the risk introduced by HPP attacks,
let’s also consider the following code snapshot of an e-
banking application:

void private executeBackendRequest(HTTPRequest request){

String amount=request.getParameter(„amount”);

String beneficiary=request.getParameter(„recipient”);

HttpRequest(„http://backendServer.com/actions”,”POST”,

”action=transfer&amount=”+amount+”&recipient=”+beneficiary);

}

In this example, a frontend resource provides proxy
functionalities to an internal application resource. As
mindful readers have probably noticed, a malicious
user could potentially pollute the recipient parameter
with the %26action% 3ddeposit attack payload.

As a result, the backend request will look like:

action=transfer&amount=1000&recipient=Mat&action=deposit

Assuming that request is processed by a web
framework which considers the last occurrence of
multiple parameters (e.g. PHP), the overall action
would allow an unauthorized deposit operation of
1000$.

Other Uses
In a previous example, we described how an attacker
can pollute a link by injecting a new parameter into an
existing parameter of a GET request. HPP attacks can

also be used to override parameters between different
input channels (e.g., GET, POST, or HEADER fields). In
the next snippet, the attacker forces the client to build
a request that can potentially override the value of the
id=1 POST parameter. This is achieved by injecting the
id=6 in the vulnerable parameter via GET.

URL: foo?vulnerable-parameter=foo%26id%3d6
FORM:

<form action=buy?vulnerable-parameter=foo&id=6

 <input type=”text” name=”id” />

 <input type=”submit” value=”Submit” />

</form>

Request:
POST /buy?vulnerable_parameter=foo&id=6

Host: site.com

id=1

For instance in Apache Tomcat, the previous request
would result in a selection of the item with id number
6. In fact, such web application environment considers
the first occurrence of multiple parameters selecting
GET parameters first.

For web application frameworks that concatenate
multiple values of the same parameter (e.g. ASP), an
attacker could use HPP to launch traditional web attacks
(e.g. SQL Injection) bypassing web application firewalls
(WAFs). As a matter of fact, HPP can be successfully

Figure 3. An example of HPP server-side vulnerability affecting an ebanking application

���������

�����������

��

��

������

�������������������������

�������������������
������

���

���������������

����������

���������������

�����

�����������

�������������

���������������

��������

����������������

���������

���������

���������

07/2011 22

ATTACK

used to split malicious payloads and avoid signature-
based detection.

In ASP, the two query strings var=foo&var=bar and
var=foo,bar are equivalent as the second one can be
obtained by the server-side concatenation of parameters.

The following shows how an attacker can setup a
SQL Injection attack by splitting his query into multiple
parameters with the same name.

Standard SQLi: show _ user.aspx?id=5;select+1,2,3+from+u

sers+where+id=1--

SQLi over HPP: show_user.aspx?id=5;select+1&id=2&id=3+f
rom+users+where+id=1--

Lavakumar Kuppan published an alternative version
of this example where commas introduced by the s
concatenation are stripped out with inline comments
(only on Microsoft SQL Server).

Standard SQLi: show _ user.aspx?id=5+union+select+*+fro

m+users--

SQLi over HPP: show_user.aspx?id=5/*&id=*/union/*&id=*/
select+*/*&id=*/from+users--

HPP in real-life
So far, we have illustrated several hypothetical situations
where HPP can be used to override existing hard-coded
HTTP parameters, modify the application behaviors and
potentially exploit uncontrollable variables. Unfortunately,
HPP vulnerabilities exist in real web applications too.

A dangerous utilization of HPP consists into bypassing
the token protection mechanism used to prevent Cross-
Site Request Forgery (CSRF) vulnerabilities. In this Forgery
case, a unique token is generated by the application
and inserted in all links to sensitive URLs. When the
application receives a request, it verifies the token
before authorizing the action. Hence, since the attacker
cannot predict the value of the token, she cannot forge
the malicious URL to initiate the action.

The following URLs show how the CSRF protection
adopted by Yahoo Mail! has been bypassed (in
year 2009) via HPP. This client-side attack allowed
an attacker to trick his victims into deleting all their
personal e-mails. Note that the secret token is present
in the .rand parameter.

URL:showFolder?fid=Inbox&order=down&tt=24&pSize=25&startMid
=0%2526cmd=fmgt.emptytrash%26DEL=1%26DelFID=Inbox%26cmd=fm

gt.delete

Tricking a victim into clicking on the above link allowed
an attacker to initiate a delete operation without the
knowledge of the anti-CSRF token. In the victim’s
page, the previous request would result in the link:

showMessage?sort=date&order=down&startMid=0%26cmd%3Dfmgt.

emptytrash&DEL=1&DelFID=Inbox&cmd=fmgt.delete&.rand=107

6957714

A second click on any link in the webmail would
irremediably empty the user’s trash.

Interested readers can obtain further details watching
a demonstration video (http://www.youtube.com/
watch?v=-O1y7Zy3jfc) of the proof-of-concept attack.

Another HPP vulnerability turned out to affect Apple
Cups, the well-known printing system used in Mac OS
X and many UNIX systems. Exploiting HPP, an attacker
could easily trigger a Cross-Site Scripting vulnerability.

http://127.0.0.1:631/admin/?kerberos=onmouseover=alert

(1)&kerberos

The application validation checkpoint could be
bypassed by adding an extra kerberos argument having
a valid string as content (e.g. empty string). As the
validation checkpoint would only consider the second
occurrence, the first kerberos parameter in vulnerable
versions is not properly sanitized before being used

Figure 4. An example of content pollution using HPP Figure 5. Sharing components on the web

HTTP Parameter Pollution

www.hakin9.org/en 23

to generate dynamic HTML content. Successful
exploitation would result in Javascript code execution
under the context of the hosting web site.

An even more critical vulnerability has been recently
patched by Google in its popular blogging platform.
An HPP bug in Blogger allowed malicious user to
take ownership of the victim’s blog. In detail, this
authentication flaw exploited how different application
layers consider multiple occurrences, treating either
the first or the second occurrence. Nir Goldshlager
discovered that the following request (note the two
blogid parameters) would result in the attacker added
as an author on the victim’s blog:

POST /add-authors.do HTTP/1.1

security_token=attackertoken&blogID=attackerblo

gidvalue&blogID=victimblogidvalue&authorsList=goldsh

lager19test%40gmail.com(attacker email)&ok=Invite

The flaw resided in the authentication mechanism
used by Blogger. The validation was performed on
the first parameter, whereas the actual operation used
the second occurrence. From that, the attacker could
easily elevate his privileges from author to admin
thanks to the following request:

POST /team-member-modify.do HTTP/1.1

security_token=attackertoken&blogID=attackerownblogid&

blogID=victimblogidvalue&memberID=attackermemberid&is

Admin=true&ok=Grant+admin+privileges

A demonstration video for this vulnerability can be
watched on YouTube (http://www.youtube.com/watch?v
=AdIWl0gkynk).kk

Then, HPP can also be used to create phishing traps
or trick the user into performing involuntary actions
through UI-Redressing or content pollution attacks.

A simple example is briefly illustrated in Figure 4.
In this case, tampering the product code (p

parameter) an aggressor may be able to create
misleading situations within an e-commerce site. The
online customer see the description of product #67760,
however it’s actually buying product #67765.

Finally, one of the author discovered that the sharing
functionality offered by Facebook was prone to
parameter pollution client-side attacks. We are talking
of the well known like and share buttons commonly
found on blogs and news (ref. Figure 5). This attack
is possible when the website (client) that uses the
sharer API does not properly sanitizes the values sent
to Facebook (server). In this situation, the attacker can
abuse of a vulnerable page to inject a second reference
parameter (called u) into the description parameter to
overwrite the URL to share.

For example, given a vulnerable page of
www.vulnerable.com, the following URL: http://
www.vulnerable.com/shareurl.jsp?shareurl=http://
www.vulnerable.com/news.html&description=The+n
ews+page+of+vulnerable.com%26u%3Dattackerurl
returns a page polluted with the Facebook injected link
(the precedence is on the second parameter): http://
www.facebook.com/sharer.php?u=http://www.vulnerable.com/ne

ws.html&r=The+news+page+of+vulnerable.com&u=attackerurl.

Facebook fixed this issue by checking that the URL to
share is sent once to the component.

Automated Detection with PAPAS
Marco Balduzzi and colleagues developed a tool
called PAramater Pollution Analysis System (PAPAS)
to automate the detection of HPP flaws in Web
Applications. PAPAS consists of four main components:
A browser, a crawler, and two scanners. Figure 1
illustrates the global architecture of PAPAS.

The first component is an instrumented vesion
of Firefox. The browser is responsible for fetching
webpages, rendering their content, and extracting all

Figure 6. PAPAS global architecture

��������������

���������

������������

�������

������

������
�������

��������� ��������

�������

07/2011 24

ATTACK

the links and form URLs contained in the page. The big
benefit of having adopted a real browser instead of a
custom HTTP/HTML client to render the pages, is that
the browser provides for free an engine for handling
client-side scripts (e.g. Javascript) and complex
dynamic applications (IFRAMEs, events).

That is, when the crawler issues a new page to be
tested, the browser in PAPAS first waits until the target
page is loaded; after the browser parses the DOM,
executes any client-side scripts, and loads additional
resources; then a browser extension extracts the
content, the list of links, and the forms in the page.
This extension has been developed using the standard
technology offered by the Mozilla development
environment: a mix of Javascript and XML User
Interface Language (XUL) and XPConnect to access
Firefox’s XPCOM components. These components
are used for invoking GET and POST requests and for
communicating with the scanning components.

The crawler communicates with the browser through a
bidirectional TCP/IP channel. This channel is used by the
crawler to inform the browser on the URLs that need to
be visited, and on the forms that need to be submitted.
Furthermore, the channel is also used to retrieve the
collected information from the browser. The crawler
automatically fills forms with guesses data, for example
random alphanumeric values of 8 characters are inserted

into password fields and a default email address is
inserted into fields with the name email, e-mail, or mail.
When the authenticated area of a site wants to be tested,
the crawler can be assisted by manually logging into
the application using the browser, and then specifying
a regular expression to be used to prevent the crawler
from visiting the logout page (e.g., by excluding links that
include the cmd=logout parameter).

Every time the crawler visits a page, it passes the
extracted information to the two scanners so that it
can be analyzed. The parameter Precedence Scanner
(P-Scan) is responsible for determining how the page
behaves when it receives two parameters with the
same name; the Vulnerability Scanner (V-Scan) tests Scanner
the page to determine if it is vulnerable to HPP attacks.

The Precedence Scanner starts by taking the first
parameter of the URL (in the form par1=val1), and
generates a new parameter value val2 that is similar
to the existing one. In a second step, the scanner asks
the browser to generate two new requests. The first
request contains only the newly generated value val2.
In contrast, the second request contains two copies of
the parameter, one with the original value val1, and one
with the value val2. Example:

Page0 – Original Url: application.php?par1=val1&par2=val2
Page1 – Request 1: application.php?par1=new_val&par2=val2
Page2 – Request 2: application.php?par1=val1&par1=new_
val&par2=val2

A naive approach to determine the parameter
precedence would be to simply compare the three pages
returned by the previous requests: If Page1 == Page2, then
the second (last) parameter would have precedence
over the first. If, however, Page2 == Page0, the application
is giving precedence to the first parameter over the
second. Unfortunately, this straightforward approach
does not work well in practice. Modern web applications
are very complex, and often include dynamic content
(e.g. banners) that may still vary even when the page
is accessed with exactly the same parameters. To solve
this problem, the P-Scan component first pre-process the
page by trying to eliminate content that does not depend
on the parameter values, and then uses mathematical
heuristics to compute the similarity among pages (more
details in the references).

The Vulnerability Scanner tests the page to determine
if some parameters can be injected by HPP. For every
page that V-Scan receives from the crawler, it tries to
inject a URL-encoded version of an innocuous parameter
(a nonce) into each existing parameter of the query string
and possibly of the page. Then, for each injection, the
scanner verifies the presence of the parameter in links,
action fields and hidden fields of forms in the answer
page. For example, given a parameter par1=val1, V-ScanFigure 7. The online version of PAPAS

HTTP Parameter Pollution

www.hakin9.org/en 25

injects build a request as par1=val1%26foo%3Dbar and then
checks if the nonce &foo=bar has been used to build a link
or a form in the answer page. This technique works well
for parameters that are reused by the application under
the same or different name.

The scanner supports three different operational
modes: fast mode, extensive mode and assisted mode.
The fast mode aims to rapidly test a site for potential
vulnerable parameters and enables the standard tests.
In the extensive mode, the scanner pickup each single
parameter from the page’s content and injects the nonce.
The extensive mode is lower but tries to detect injections
in parameters that were not used in the original page.

The assisted mode allows the scanner to be used
in an interactive way. That is, the crawler pauses and
specific pages can be tested for parameter precedence
and HPP vulnerabilities. As a result, the assisted mode
can be used by security professionals to conduct semi-
automated assessment of web applications, or to test
websites that require a particular user authentication.

In the current version of PAPAS the vulnerability
scanner only looks for client-side vulnerabilities. In
fact, testing for server-side attacks using a black-box
approach (that one used by PAPAS) is more difficult
than testing for client-side attacks as comparing
requests and answers is not sufficient.

Free-to-use online service
Marco has recently deployed an online version of PAPAS,
shows in figure 6, that allows website maintainers to scan
their sites for HTTP Parameter Pollution vulnerabilities.
Web developers and analysts can submit their sites
to PAPAS for being tested, without any additional fee.
PAPAS uses a challenge-response mechanism based on
tokens (called PAPAS.txt) to prove that the submission
comes from the developer/maintainer of the site. Once
the site has been validated, an automated engine queues
the submission and contacts the user when the scan is
completed and the HTML report is available.

The submission is customizable and settings such
as scanning depths, delaying times between requests,
precedence and vulnerability scanning engines,
extensive operational mode and URL to exclude are all
configurable by the analyst.

Countermeasures
Being aware of this new class of vulnerabilities gives
you a competitive advantage over the attackers. If you
went through the entire article, it should be already clear

how malicious users can abuse your application and
what is the root cause of this security problem.

As for every input validation vulnerability, filtering
is the main countermeasure to avoid that malicious
payloads can be injected in the application. In case of
HPP, the query string delimiter and its encoded versions
are the dangerous characters to be properly filtered.dangerous

Input validation and output encoding allow to protect
our applications against HPP attacks.

As a final remark, we would like to suggest to the
reader a few general recommendations:

• Encode query string delimiters using URL encoding
• Consider parameter precedence whenever

implementing your business logic
• Perform proper channel (GET/POST/Header fields)

validation
• Use strict regexp in URL rewriting

Lastly, it’s important to know our systems and the
technology used in our application environments so
that data validation and encoding can be applied for
the right context.

MARCO BALDUZZI
Marco `embytè Balduzzi, MSc. in Computer Engineering,

has been involved in IT-Security for more than 8 years with

international experiences in both industrial and academic

�elds. He has worked as security consultant and engineer

for different companies before joining a Ph.D. program in

EURECOM (iSecLab group). He attended well-known and high-

pro�le conferences all over (BlackHat, OWASP AppSec, NDSS)

and in former times was an active member of open-source

projects and Italian hacking groups.

LUCA CARETTONI
Luca `ikki` Carettoni, MSc. in Computer Engineering with a

major specialization in web application and Java security.

He has published several research papers, vulnerability

advisories and articles on computer security. In short, he

breaks things for a living.

STEFANO DI PAOLA
Stefano Di Paola is the CTO and a cofounder of Minded

Security, where he is responsible for the Research and

Development Lab. Prior to founding Minded Security, Stefano

was a freelance security consultant, working for several

private and public companies. Stefano is recognized as one of

the top application security researchers.

On the ‘Net
• http://www.iseclab.org/people/embyte/slides/bh_series.pdf – Slides on HTTP Parameter Pollutionf

• http://papas.iseclab.org/ – The PAPAS service/

• http://www.iseclab.org/people/embyte/slides/BHEU2011/whitepaper-bhEU2011.pdf – The Blackhat white paper on Parameter f

Pollution

