
Security bugs discovered in Ubiquiti Unifi Controller

Affected Component: Testing was performed on v3.1.4 (Linux). Stable versions and other
platforms may be affected as well.
Credits: Luca Carettoni

#1 Insecure Java Random() to generate secret tokens - HIGH RISK

java.util.Random is used across the entire codebase to generate secret tokens, such as
session cookies, AP auth keys and reset tokens. This class is not suitable for strong random
strings generation. Under some circumstances, it seems practical to predict the reset
password token and compromise the admin account, which would lead to full compromise of
the entire platform.

In the Java version shipped with the Unifi controller, Random() depends on the time in
nanosecond and a static seed.

 77 public Random() { this(++seedUniquifier + System.nanoTime()); }

 78 private static volatile long seedUniquifier = 8682522807148012L;

Considering that a single instance of Random() is used across the Unifi Controller and
multiple method invokes nextInt() (thus modifying the seed state), the exploitability of this
issue is not trivial.

In order to predict a token and compromise the application, an attacker would require:
• Admin email

• Time nanosecond of com.ubnt.ace.E class loading

• Exact sequence of previous usage (e.g. how many reset tokens have been generated)

A realistic attack can occur just after a reboot of the controller, as the application would be in a
"clean" state. By invoking the recover password request and inspecting the HTTP response
Date header, an attacker could predict with good approximation the time of the server

Having that information, it is feasible to bruteforce the actual Random seed used by the
remote server, using the following pseudocode:

As the controller code does not limit the number of verify token requests, it is possible to
validate the generated tokens. According to my preliminary testing, the attack is possible
although it would require several hours to succeed.

Random() must be replaced with SecureRandom().

#2 System-wise Cross Site Request Forgery - HIGH RISK

Unifi Controller does not protect the application against Cross-Site-Request-Forgery (CSRF)
attacks. Please refer to http://en.wikipedia.org/wiki/Cross-site_request_forgery.

For instance, it would be possible to override arbitrary options within system.properties that
could eventually lead to full-compromise (e.g. by appending malicious MongoDB parameters).

The following is an example of a malicious HTML page that would create the key "CSRF =
CSRF".

Another malicious abuse consists into forcing a change password using an attacker-controlled
value. See bug #3.

The application must use anti-CSRF arbitrary tokens to prevent those attacks. This is a
standard practice in modern web applications.

#3 Change password does not require old password - MEDIUM RISK

As mentioned in #2, Unifi Controller does not require the old admin password while changing
credentials. This is an insecure design that can be easily abused by malicious users. Any
session hijacking vulnerability or CSRF could result in full compromise.

#4 Frameable response (ClickJacking) - MEDIUM RISK

It might be possible for a web page controlled by an attacker to load the content Unifi web
controller within an iframe on the attacker's page. This may enable a "clickjacking" attack
(https://www.owasp.org/index.php/Clickjacking), in which the attacker's page overlays the
target application's interface with a different interface provided by the attacker. By inducing
victim users to perform actions such as mouse clicks and keystrokes, the attacker can cause
them to unwittingly carry out actions within the application that is being targeted. This
technique allows the attacker to circumvent defenses against cross-site request forgery, and
may result in unauthorized actions.

To effectively prevent framing attacks, the application should return a response header with
the name X-Frame-Options and the value DENY to prevent framing altogether, or the value
SAMEORIGIN to allow framing only by pages on the same origin as the response itself.

#5 Credentials are saved in plain-text within MongoDB - MEDIUM RISK

Administration credentials are stored in plain-text (within ace, db.admin.find()) and displayed
in clear-text within the Unifi Controller web interface. From the security standpoint, this is a
bad practice; many types of vulnerability, such as weaknesses in session handling, broken
access controls, and cross-site scripting, would enable an attacker to leverage this behavior
to retrieve the passwords of other application users.

Considering that the same credential is used by all APs SSH, this departure from best
practice allows to compromise the entire platform.

#6 Multiple Cross-Site Scripting vulnerabilities (Stored and Reflected) in /api/, abusing
Internet Explorer content sniffing - LOW RISK

Multiple /api/ endpoints allow to inject arbitrary HTML tags, as illustrated in the example below

• /api/s/default/get/setting

• /api/s/default/set/setting/connectivity

• /api/s/default/set/setting/country

• /api/s/default/set/setting/guest_access

• /api/s/default/set/setting/mgmt

• /api/s/default/set/setting/rsyslogd

• /api/s/default/set/setting/snmp

• /api/s/test/set/setting/guest_access

The user-supplied <a> tag is included within the response body; This behavior demonstrates
that it is possible to inject new HTML tags into the returned document.
This behavior can be abused by an attacker to perform Cross-Site Scripting against Internet
Explorer users. JSON responses use the content-type application/json; the problem is that the
default mime type list of Internet Explorer does not include that mime-type, thus it is possible
to force the browser to sniff the content and display the page as HTML.

For all technical details, please refer to http://blog.watchfire.com/wfblog/2011/10/json-based-
xss-exploitation.html The author covers in great detail a possible technique.

To prevent Content-Type sniffing in Internet Explorer and mitigate this attack, the application
must include the following HTTP header in all HTTP responses:

X-Content-Type-Options: nosniff

Please refer to http://msdn.microsoft.com/en-us/library/ie/gg622941(v=vs.85).aspx

