
04/05/07 1

Luca Carettoni – l.carettoni@securenetwork.it
Claudio Merloni – c.merloni@securenetwork.it

String Analysis for the Detection String Analysis for the Detection
of Web Application Flawsof Web Application Flaws

CONFidence 2007 - May 12-13, Kraków, Poland

04/05/07 2

Web Applications

 Web Applications are everyday more pervasive
 Easy to implement, yet very powerful way to give

access to services and content
 Can be made of a handful of simple scripts or a

very complex architecture
 Today, web application development often doesn't

take into consideration the specific risks coming
from the exposure to the web itself

04/05/07 3

Web Application Security

 Giving access to web application means asking
the world to send HTTP request

 Attackers more and more actively look for web
application flaws as they are:

− surprisingly common
− often the key to subvert the victim's data and

networks
− it is quite easy for an attacker to hide his identity

using well known anonymizing techniques

04/05/07 4

Input Validation - 1

 Every data handled by a web application should
be considered unsafe

 HTTP request are the primary input feed
 Attackers can alter any part of an HTTP request:

pieces of info coming from a client (also if subject
to client side validation) should never be
considered safe:

− GET and POST parameters
− request headers
− cookies, and so on.

04/05/07 5

Input Validation - 2

 Tampering the input an attacker can perform a
variety of attacks, for example:

− injection of SQL code, OS commands, and so on
− injection of client side scripts to compromise other

users' session data and credentials or attack the
local machine

− buffer overflows
− directory traversal to disclose server-side sensitive

info
 Complete input filtering is often too complex to

handle

04/05/07 6

Input Validation - 3

 SQL injection example:
$query = sprintf(“SELECT * FROM %s WHERE owner=‘%s’ AND nickname=‘%s’”, $this-

>table, $this->owner,$alias);
$res = $this->dbh->query($query);

What if $alias was ‘ UNION ALL SELECT * FROM address WHERE ‘1’=‘1 ?

 Directory traversal example:
<?php $template = 'blue.php';

if (is_set($_COOKIE['TEMPLATE']))
$template = $_COOKIE['TEMPLATE'];
include ("/home/users/phpguru/templates/" . $template); ?>

What if the attacker tampered the HTTP request the following way?

GET /vulnerable.php HTTP/1.0
Cookie: TEMPLATE=../../../../../../../../../etc/passwd

04/05/07 7

Input Validation - 4

 Path Based Access Control

public class PathBasedAccessControl extends LessonAdapter {
[...]
String dir = s.getContext().getRealPath("/images"); // A
[...]
String file = s.getParser().getRawParameter(FILE, ""); // B
[...]
File f = new File((dir + "\\" + file).replaceAll("\\\\","/")); // C
}

A: we are in /images/ (Absolute Path on my Linux box: /var/lib/tomcat-
5.5/webapps/WebGoat/)

B: from the HTML form, we take the FILE input parameter
C: Creating a File object...

04/05/07 8

Input Validation - 5

 We can request a file inside the allowed images
folder:

− right.gif
 But we can also try to break out of the web root

with a correctly crafted path:
− %2e%2e%2f%2e%2e%2f2e%2e%2f2e%2e%2f2e%2e%

2f2e%2e%2fetc/passwd

04/05/07 9

How to deal with that?

 The solution is the combination of secure desing and
development, testing, training and review

 Directly filtering before they reach the application
 Interacting with the application or analyzing its source code:

− Source Code Analyzer

− Web Application Scanner

− Database Scanner

− Binary Analysis Tool

− Runtime Analysis Tool

− Configuration Scanner

− HTTP Proxy

 Source analysis: pattern matching or data flow analysis

04/05/07 10

Checking the input

 Input processing in web applications is mainly
performed through the exchange of text strings
between the client and the server. That's why we
focus on methods working on strings.

 Validating the input: checkpoint
 Blacklist: defining what bad input

is. Then escaping, substituting,
and so on

 Whitelist: defining what good
input is and filtering anything that
doesn't match

04/05/07 11

Hotspot - 1

 We use the term hotspot to identify the function
calls that in a vulnerable application would be
exploited as the result of unvalidated input

 Every hotspot is associated to a specific
signature, composed by type of vulnerability,
fully qualified method name, number and type
of parameters

 We are interested in tracing the possible values
that hotspots' String and StringBuffer parameters
could take during the application execution

04/05/07 12

Hotspot - 2

 Path traversal: methods accessing the filesystem.
 java.io.File(java.lang.String)
 java.io.FileReader(java.lang.String), ...

 SQL injection: database connectivity.
 java.sql.Statement.executeQuery(java.lang.String)
 java.sql.Connection.prepareStatement(java.lang.String), ...

 Command injection: command execution, class loading
and so on.

 java.lang.Runtime.exec(java.lang.String, …)
 java.lang.System.load(java.lang.String), ...

04/05/07 13

Automaton definition

 In a single execution a variable will take, in a
specific execution step, a well defined value

 Considering every possible execution we obtain
the set of values that the variable could take

 Language: a finite-state automaton representing
the set of those possible values

 The core of our analysis method relies on
evaluating the language associated to every
hotspots' string parameter.

04/05/07 14

Analysis method

 Phase 1: parsing the
application source code
looking for hotspots

 Phase 2: Building the
language associated
to every candidate
parameter

 Phase 3: Comparing
those languages with
our knowledge base of
safe languages

04/05/07 15

Language comparison

 Unvalidated input: using the input
vectors (eg. par1) it is possible to
modify hotspot parameters (eg. qry)

 The hotspot parameter could then
take a value which isn't valid SQL

 In our knowledge base we defined
the safe language for the hotspot as
the common SQL language

 The complement of this language
define the values that qry shouldn't
be allowed to take

 If the intersection between
language built by analyzing the
application data flow and the
complement of our safe language is
not null then there is a potential flaw

import java.servlet.*;

…

public class Servlet extends HttpServlet{

public void doGet(…){

 String str1 =
request.getParameter(“par1”);

 String qry = “SELECT pass FROM table WHERE
myRow=‘“;

 qry = qry.concat(str1);

 qry = qry.concat(“‘”);

 …

 Connection cn = … ;

 Statement cmd = cn.createStatement();

 ResultSet res = cmd.executeQuery(qry);

 …

}}

04/05/07 16

Building a tool - 1

 Tightly integrated into the Eclipse IDE
 Code / Compile / Check / Fix
 No user intervention needed in the analysis phase
 Different level of severity in scanning and

reporting
 Vulnerabilities defined as plugins that describe the

automaton associated

04/05/07 17

Building a tool - 2

 The analysis is performed using both bytecode
(data-flow) and source code (reporting)

 Project resources scanning based both on Eclipse
Framework and on raw filesystem analysis:

− The Eclipse Framework define source locations,
classe locations and provide methods to quickly
navigate the project structure

− Filesystem resources can be easily analyzed using
both source and class Java reflection

04/05/07 18

Testing results

 Testing has been conducted on the OWASP
WebGoat project (v3.7, 55 Java classes, 16160
lines)

 Our tool:
− Analysis time: 483 sec.
− Vulnerabilities found: 16 SQL Injection, 16 Path Traversal

 LAPSE:
− Analysis time: 32 sec.
− Vulnerabilities found: 2 Command Injection, 1 Cross-Site

Scripting, 13 SQL Injection

04/05/07 19

Let's see it!

DEMO
DEMO

04/05/07 20

Summing up

 It is nowadays critical to enforce security policies
on the whole web application lifecycle

 Source code static analysis cannot completely
solve the web app security problem but it's
definitely an important step in the right direction

 Our approach is more complex than others but
gives more accurate results

 Tightly integrating the security analysis with the
IDE can be the key to train the developers about
the secure coding practices

04/05/07 21

Future work

 Build a detector knowledge base, able to
effectively identify at least the most common
vulnerabilities

 Automatically parse project resources contained
inside j2ee archives.

 Automatically compile Jsp resources to servlets
 Implement the backward slice feature
 Rework the data flow analysis components to

make the tool able to process more programming
languages

04/05/07 22

Luca “ikki” Carettoni - l.carettoni@securenetwork.it
Claudio “paper” Merloni - c.merloni@securenetwork.it

SecureNetwork S.r.l.: www.securenetwork.it

Questions?

