
String Analysis for the Detection
of Web Application Flaws

By

Luca Carettoni, Security Consultant, Secure Network S.r.l.
l.carettoni@securenetwork.it

About this talk

• This research was partially supported by:

• Secure Network is a start-up company based in Milan, Italy
• Consulting, education and research about IT security
• Right now, I'm working as security researcher in

collaboration with the Politecnico of Milan University

Input validation flaws 1/2
 Any data handled by a web application should be

considered unsafe
 HTTP requests are the primary input feed
 By tampering with the input, an attacker can perform a

variety of attacks, for example:
− injection of SQL code, OS commands, and so on
− injection of client side scripts to compromise other

users' session data and credentials or attack the client
machine

− buffer overflows
− directory traversal to disclose server-side sensitive info

 Complete input filtering is often too complex to handle

Input validation flaws 2/2
 SQL injection example:
$query = sprintf(“SELECT * FROM %s WHERE owner=‘%s’ AND nickname=‘%s’”, $this-

>table, $this->owner,$alias);
$res = $this->dbh->query($query);

What if $alias was ‘ UNION ALL SELECT * FROM address WHERE ‘1’=‘1 ?

 Directory traversal example:
<?php $template = 'blue.php';

if (is_set($_COOKIE['TEMPLATE']))
$template = $_COOKIE['TEMPLATE'];
include ("/home/users/phpguru/templates/" . $template); ?>

What if the attacker tampered the HTTP request the following way?

GET /vulnerable.php HTTP/1.0
Cookie: TEMPLATE=../../../../../../../../../etc/passwd

How to deal with that?
 The solution is the combination of secure design and

development, testing, training and review
 Directly filtering before they reach the application
 Interacting with the application or analyzing its source

code using differents approaches:
(IEEE Security&Privacy July/August 2006)

-Source Code Analyzer -Runtime Analysis Tool
-Configuration Scanner -HTTP Proxy
-Web Application Scanner-Database Scanner
-Binary Analysis Tool

 Source analysis: pattern matching or data flow analysis

Hotspot
 We use the term hotspot to identify the function calls

that in a vulnerable application would be exploited as
the result of unvalidated input

 Every hotspot is associated to a specific signature,
composed by type of vulnerability, fully qualified
method name, number and type of parameters

 We are interested in tracing the possible values that
String and StringBuffer parameters of hotspots could
contain during the application execution

 For example...

− Path traversal: methods accessing the filesystem.
 java.io.File(java.lang.String)
 java.io.FileReader(java.lang.String), ...

The main idea
 Input processing in web applications is mainly

performed through the exchange of text strings
between the client and the server.
That's why we focus on methods working on strings.

 In a single execution a variable will take, in a specific
execution step, a well defined value

 Considering every possible execution we obtain
the set of values that the variable could take

 Language: a finite-state automaton representing
the set of those possible values

 The core of our analysis method relies on
evaluating the language associated to every
hotspots' string parameter.

Analysis method
 Phase 1: parsing the

application source code
looking for hotspots

 Phase 2: Building the
language associated
to every candidate
parameter

 Phase 3: Comparing
those languages with
our knowledge base of
safe languages

String/Automaton operations

 Each string operation is translated into a specific
automaton action:

 A simple example, the toLowerCase() Java method:

)'(
)(

)(LA
fT

LA →

}L x,...,x, x L x,...,x, x| ...xxx{ Un21in21n21 ∉∧∈=LL

Language comparison
 Using the input vectors (eg. par1)

it is possible to modify hotspot
parameters (eg. qry)

 The hotspot parameter could
then contain a value which isn't
valid SQL

 In our knowledge base we
defined the safe language for the
hotspot as the common SQL
language

 If the intersection between
language built by analyzing the
application data flow and the
complement of our safe
language is not null then there is
a potential flaw

import java.servlet.*;

…

public class Servlet extends HttpServlet{

public void doGet(…){

 String str1 =
request.getParameter(“par1”);

 String qry = “SELECT pass FROM table WHERE
myRow=‘“;

 qry = qry.concat(str1);

 qry = qry.concat(“‘”);

 …

 Connection cn = … ;

 Statement cmd = cn.createStatement();

 ResultSet res = cmd.executeQuery(qry);

 …

}}

∅=¬)(db LL

JSEC – Java.String Eclipse Checker

 Tightly integrated into the Eclipse IDE
 Code / Compile / Check / Fix
 No user intervention needed in the analysis phase
 Different level of severity in scanning and

reporting
 Vulnerabilities defined as plugins that describe

the automaton associated
 The analysis is performed using both bytecode

(data-flow) and source code (reporting)

JSEC – Java.String Eclipse Checker

DEMO
DEMO

Summing up

 Source code static analysis cannot completely solve the
web app security problem but it's definitely an
important step in the right direction

 Our approach is more complex than others but
gives more accurate results

 Tightly integrating the security analysis with the
IDE can be the key to train the developers about
the secure coding practices

 Now: I'm building a detector knowledge base, able
to effectively identify the most common
vulnerabilities

 Future: Implement the backward slice feature

Questions ?

Feedbacks are welcome
 Luca Carettoni - l.carettoni@securenetwork.it

More info on: http://www.securenetwork.it

mailto:l.carettoni@securenetwork.it

