
String Analysis for the Detection
of Web Application Flaws

By

Luca Carettoni, Security Consultant, Secure Network S.r.l.
l.carettoni@securenetwork.it

About this talk

• This research was partially supported by:

• Secure Network is a start-up company based in Milan, Italy
• Consulting, education and research about IT security
• Right now, I'm working as security researcher in

collaboration with the Politecnico of Milan University

Input validation flaws 1/2
 Any data handled by a web application should be

considered unsafe
 HTTP requests are the primary input feed
 By tampering with the input, an attacker can perform a

variety of attacks, for example:
− injection of SQL code, OS commands, and so on
− injection of client side scripts to compromise other

users' session data and credentials or attack the client
machine

− buffer overflows
− directory traversal to disclose server-side sensitive info

 Complete input filtering is often too complex to handle

Input validation flaws 2/2
 SQL injection example:
$query = sprintf(“SELECT * FROM %s WHERE owner=‘%s’ AND nickname=‘%s’”, $this-

>table, $this->owner,$alias);
$res = $this->dbh->query($query);

What if $alias was ‘ UNION ALL SELECT * FROM address WHERE ‘1’=‘1 ?

 Directory traversal example:
<?php $template = 'blue.php';

if (is_set($_COOKIE['TEMPLATE']))
$template = $_COOKIE['TEMPLATE'];
include ("/home/users/phpguru/templates/" . $template); ?>

What if the attacker tampered the HTTP request the following way?

GET /vulnerable.php HTTP/1.0
Cookie: TEMPLATE=../../../../../../../../../etc/passwd

How to deal with that?
 The solution is the combination of secure design and

development, testing, training and review
 Directly filtering before they reach the application
 Interacting with the application or analyzing its source

code using differents approaches:
(IEEE Security&Privacy July/August 2006)

-Source Code Analyzer -Runtime Analysis Tool
-Configuration Scanner -HTTP Proxy
-Web Application Scanner-Database Scanner
-Binary Analysis Tool

 Source analysis: pattern matching or data flow analysis

Hotspot
 We use the term hotspot to identify the function calls

that in a vulnerable application would be exploited as
the result of unvalidated input

 Every hotspot is associated to a specific signature,
composed by type of vulnerability, fully qualified
method name, number and type of parameters

 We are interested in tracing the possible values that
String and StringBuffer parameters of hotspots could
contain during the application execution

 For example...

− Path traversal: methods accessing the filesystem.
 java.io.File(java.lang.String)
 java.io.FileReader(java.lang.String), ...

The main idea
 Input processing in web applications is mainly

performed through the exchange of text strings
between the client and the server.
That's why we focus on methods working on strings.

 In a single execution a variable will take, in a specific
execution step, a well defined value

 Considering every possible execution we obtain
the set of values that the variable could take

 Language: a finite-state automaton representing
the set of those possible values

 The core of our analysis method relies on
evaluating the language associated to every
hotspots' string parameter.

Analysis method
 Phase 1: parsing the

application source code
looking for hotspots

 Phase 2: Building the
language associated
to every candidate
parameter

 Phase 3: Comparing
those languages with
our knowledge base of
safe languages

String/Automaton operations

 Each string operation is translated into a specific
automaton action:

 A simple example, the toLowerCase() Java method:

)'(
)(

)(LA
fT

LA  →

}L x,...,x, x L x,...,x, x| ...xxx{ Un21in21n21 ∉∧∈=LL

Language comparison
 Using the input vectors (eg. par1)

it is possible to modify hotspot
parameters (eg. qry)

 The hotspot parameter could
then contain a value which isn't
valid SQL

 In our knowledge base we
defined the safe language for the
hotspot as the common SQL
language

 If the intersection between
language built by analyzing the
application data flow and the
complement of our safe
language is not null then there is
a potential flaw

import java.servlet.*;

…

public class Servlet extends HttpServlet{

public void doGet(…){

 String str1 =
request.getParameter(“par1”);

 String qry = “SELECT pass FROM table WHERE
myRow=‘“;

 qry = qry.concat(str1);

 qry = qry.concat(“‘”);

 …

 Connection cn = … ;

 Statement cmd = cn.createStatement();

 ResultSet res = cmd.executeQuery(qry);

 …

}}

∅=¬)(db LL 

JSEC – Java.String Eclipse Checker

 Tightly integrated into the Eclipse IDE
 Code / Compile / Check / Fix
 No user intervention needed in the analysis phase
 Different level of severity in scanning and

reporting
 Vulnerabilities defined as plugins that describe

the automaton associated
 The analysis is performed using both bytecode

(data-flow) and source code (reporting)

JSEC – Java.String Eclipse Checker

DEMO
DEMO

Summing up

 Source code static analysis cannot completely solve the
web app security problem but it's definitely an
important step in the right direction

 Our approach is more complex than others but
gives more accurate results

 Tightly integrating the security analysis with the
IDE can be the key to train the developers about
the secure coding practices

 Now: I'm building a detector knowledge base, able
to effectively identify the most common
vulnerabilities

 Future: Implement the backward slice feature

Questions ?

Feedbacks are welcome
 Luca Carettoni - l.carettoni@securenetwork.it

More info on: http://www.securenetwork.it

mailto:l.carettoni@securenetwork.it

