3 2007

String Analysis for the Detection
of Web Application Flaws

By

Luca Carettoni, Security Consultant, Secure Network S.r.1.
l.carettoni@securenetwork.it

3 2007

About this talk
* This research was partially supported by:

.. MINISTERO DEL LAVORO oo
... EDELLA PREVIDENZA SOCIALE Fondo Sociale Europec

Direzlone Benerale per le Polll'licha Regione‘_om ba rdia

per I'Orientamento e la Formuzione

Ingenio

* Secure Network 1s a start-up company based in Milan, Italy
* Consulting, education and research about IT security

* Right now, I'm working as security researcher in
collaboration with the Politecnico of Milan University

%2 securenetwork

il percorso pid sicuro.

2007

Input validation flaws 172 ==

* Any data handled by a web application should be
considered unsafe

* HTTP requests are the primary input feed

* By tampering with the input, an attacker can perform a
variety of attacks, for example:

- 1njection of SQL code, OS commands, and so on

- 1njection of client side scripts to compromise other
users' session data and credentials or attack the client
machine

- buffer overflows
- directory traversal to disclose server-side sensitive info
* Complete input filtering 1s often too complex to handle

Input validation flaws 2/2 issE

* SQL 1njection example:

Squery = sprintf (“SELECT * FROM %s WHERE owner='%s’ AND nickname=‘'%s’”, $this-
>table, $this->owner,$alias);

$res = $this->dbh->query ($query) ;

What if $alias was ' UNION ALL SELECT * FROM address WHERE ‘1’'=‘1 ?

* Directory traversal example:

<?php $template = 'blue.php';
if (is_set($ COOKIE['TEMPLATE']))
Stemplate = $_COOKIE['TEMPLATE'] ;
include ("/home/users/phpguru/templates/" . $template); ?>

What if the attacker tampered the HTTP request the following way?

GET /vulnerable.php HTTP/1.0
Cookie: TEMPLATE=../../../../../../../../../etc/passwd

2007

How to deal with that? ISSE

* The solution 1s the combination of secure design and
development, testing, training and review

* Directly filtering before they reach the application

* Interacting with the application or analyzing its source

code using differents approaches:
(IEEE Security&Privacy July/August 2006)

-Source Code Analyzer -Runtime Analysis Tool
-Configuration Scanner -HTTP Proxy

-Web Application Scanner-Database Scanner
-Binary Analysis Tool

* Source analysis: pattern matching or data flow analysis

Hotspot —

* We use the term hotspot to 1dentify the function calls
that 1n a vulnerable application would be exploited as
the result of unvalidated input

* Every hotspot 1s associated to a specific signature,
composed by type of vulnerability, fully qualified
method name, number and type of parameters

* We are interested in tracing the possible values that
String and StrlnﬁBuffe(parameters of hotspots could
contain during the application execution

* For example...

= Path traversal: methods accessing the filesystem.
* java.io.File(java.lang.String)

* java.io.FileReader(java.lang.String), ...

The main idea T
* Input processing in web applications 1s mainly
performed through the exchange of text strings
between the client and the server.
That's why we focus on methods working on strings.

* In a single execution a variable will take, 1n a specific
execution step, a well defined value

* Considering every possible execution we obtain
the set of values that the variable could take

* Language: a finite-state automaton representing
the set of those possible values

* The core of our analysis method relies on
evaluating the language associated to every
hotspots' string parameter.

Analysis method isSE

* Phase 1: parsing the
application source code ey
looking for hotspots d

°* Phase 2; BUlldlng the Hatsoots
language associated

to every candidate Ej\

parameter oo

* Phase 3: Comparin
those languages wit
our knowledge base of D
Safe languages Reporting

2007

String/Automaton operations 'SSE

* Each string operation 1s translated into a specific
automaton action:

AL 0 H - 4w

* A simple example, the foLowerCase() Java method:

L = {XiX2...Xn | X1, X2,..., Xa 1 Li [IX1, Xa,..., Xa LJLu}

Language comparison =o-

* Using the input vectors (eg. parl)
it 1s possible to modify hotspot
parameters (eg. qry)

import Jjava.servlet.¥*;

blji 1 S let extends HttpS let
* The hotspot parameter could public class Servlet extends HttpServlet{

then contain a value which 1sn't | ,1:5¢ voia docet(.) |

Valid SQL String strl =
request.getParameter (“parl”) ;
* In our knowledge base we String qry = °
defined the safe language for the F
hotspot as the common SQL qry = qry.concat(strl);
language qry = qry.concat(™'”);
* [f the intersection between Connection cn =
language bllllt by analyzing the Statement cmd = cn.createStatement() ;
application data ﬂOW and the ResultSet res = cmd.executeQuery(qry) ;
complement of our safe N
language 1s not null then there 1s (L, M= Ld) —
a potential flaw

ISSE
JSEC - Java.String Eclipse Checker T

* Tightly integrated into the Eclipse IDE
* Code / Compile / Check / Fix
* No user intervention needed in the analysis phase

* Different level of severity in scanning and
reporting

* Vulnerabilities defined as plugins that describe
the automaton associated

* The analysis 1s performed using both bytecode
(data-flow) and source code (reporting)

Eile Edit

JSEC — Java.String Eclipse Checker

Jawa - SimpleServlet.java - Eclipse SDK

Source Refactor MWNavigate Search Project Run Window Help

o e e [wse | sBlE B e o

EP. K H| 5 =1 M simpleServiet.java x
= if(res.getString("password").equals(str2)){
//Login OK!

//Show the txt to the user

-

b - simpleServietProje

5tring thisLine;

try {
File userFile= new File(user);

FileInputStream fin = new Fi
BufferedReader myInput = new
{new InputStreamReader(finl);
while (({thisLine = myInput.rea
PrintWriter o
out.printl

1
catch (Excg

o= Outline 2 |

BN X o N T

b ‘- import declarations

= (5 simpleSenet

£F serjalversionUID : lo
g = doGet(HttpServiatRe
@ . doPost{HttpServietF

KT I |

Pm Y=0

Method Call

| Par | In Method | Line |

2\ ResultSet res = cmd. executeQuery(qry):
~rvlet.jav File userFile= new File{user);

0 doGet 59
doGet

Writable Smart Insert | 67 : 51 J

2007

: ISSE
Summing up

* Source code static analysis cannot completely solve the
web app security problem but 1t's definitely an
important step in the right direction

* Our approach 1s more complex than others but
gives more accurate results

* Tightly integrating the security analysis with the
IDE can be the key to train the developers about
the secure coding practices

* Now: I'm building a detector knowledge base, able
to effectively 1dentify the most common
vulnerabilities

* Future: Implement the backward slice feature

2007

issE

Questions ?

Feedbacks are welcome
* [uca Carettoni -

More info on: http://www.securenetwork.it

mailto:l.carettoni@securenetwork.it

